少妇搡bbbb搡bbb搡野外 ,国产aⅴ无码专区亚洲av,久久精品国产亚洲av电影,手机在线观看av片,非会员区试看120秒6次,亚洲中文字幕无码天然素人在线,久久精品国产www456c0m,一边做一边说国语对白
端海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Understanding Deep Neural Networks培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       堅持小班授課,為保證培訓效果,增加互動環節,每期人數限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、課程完成后,授課老師留給學員手機和Email,保障培訓效果,免費提供半年的技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics

Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano

Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics

Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron

Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines

Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks

Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks

Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

 
  備案號:備案號:滬ICP備08026168號-1 .(2014年7月11)..............
主站蜘蛛池模板: 挺进朋友人妻雪白的身体韩国电影| 亚洲无线码一区二区三区| 777国产偷窥盗摄精品品在线| 欧美日韩国产三级一区二区三区 | 韩国18禁啪啪无遮挡免费| 久久精品女人天堂av免费观看| 吃瓜爆料就看黑料社区| 三年片在线观看免费观看高清动漫| 成人区人妻精品一区二区三区| 国产av第一次处破| 日本少妇特殊按摩2| 五月婷婷综合缴情六月| 亚洲伊人久久综合影院| 国精产品999国精产| 亚洲三级黄色大片| 亚洲婷婷综合色高清在线| 亚洲色欲色欲综合网站| 欲色天天网综合久久| 四虎永久在线精品免费一区二区 | 国产a在亚洲线播放| 最新亚洲人成无码网www电影| 国产综合久久久久久鬼色| 欧美v国产v亚洲v日韩九九| 亚洲av无码乱码国产麻豆穿越| 日本少妇特殊按摩2| 欧美日韩精品久久久免费观看| 啦啦啦观看免费观看视频6| 色婷婷美国农夫综合激情亚洲| 免费无码又爽又刺激软件下载直播| 九九爱www免费人成视频| 亚洲日韩∨a无码中文字幕| 国产亚洲无线码一区二区| 无码精品久久一区二区三区| 国产日产欧产美韩系列麻豆| 777国产偷窥盗摄精品品在线| 国产成人8x视频网站入口| 亚洲av有码在线天堂| 无套内射蜜桃小视频| 好大好硬好深好爽想要20p| 国产成人亚洲精品无码h在线| 国产欧美日韩专区发布|